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Abstract: One of the advantages of photoacoustic imaging (PAI) is that its image contrast may
come from exogenous agents. Such advantage leads to the development of a great number of
exogenous probes. However, the biosafety of most of these contrast agents has not yet been
confirmed, thus hindering their clinical translation. In this work, we report on the utilization
of a clinically commonly used nutritional medicine, the Intralipid, as a new contrast agent for
photoacoustic imaging. Intralipid consists of soybean oil, lecithin and glycerin and has long been
adapted in clinical practices, mainly as a parenteral nutrition. In our study, we found that with
Intralipid, the imaging sensitivity of PAI can be effectively enhanced, as demonstrated in in vivo
imaging of different organs of nude mice. Further imaging studies on cancerous mice showed
not only a twofold PA signal enhancement, but also a strong and long-lasting signal aggregation
in the tumor region. Our result revealed the potential of Intralipid to be used in clinical PAI
applications, since it is clinically safe, and can be easily prepared at very low cost.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photoacoustic imaging, also named optoacoustic imaging, is an emerging biomedical imaging
technology that combines the high contrast of optical imaging with the high spatial resolution of
ultrasound [1]. In PAI, laser illumination is generally used to induce rapid thermoelastic expansion
in the tissue volume that produces ultrasonic signals, the amplitude of which is proportional to
the absorbed optical intensity. An image that maps the original optical energy deposition inside
the target is formed by detecting and processing the ultrasonic signals [2]. Therefore, the image
contrast of PAI is either based on endogenous light absorbers, such as hemoglobin or melanin,
or from an exogenous contrast agent, which usually provides better contrast than endogenous
absorbers by designing its specific absorption spectra. Moreover, exogenous contrast agents
could be engineered to deliver additional functionality such as molecular targeting [3–6]. PAI
has been successfully used in a wide variety of imaging scenarios in both pre-clinical and human
studies, including tumor screening [7–10].
In recent years, a great assortment of exogenous agents have been explored for enhancing

PAI image contrast, these include fluorescent molecular probes, nanoparticles, chromogenic
substrates and genetic reporters, etc. [11,12]. However, the biosafety of almost all of the above
agents has not yet been approved, therefore seriously hindered their clinical translation. At
present, a few numbers of exogenous agents (mainly organic dyes) are FDA-approved for used in
clinical trials involving photoacoustic imaging, e.g. indocyanine green (ICG) and methylene
blue (MB). However, the cost of these dyes is relatively high and their biosafety has not yet been
fully evaluated. For example, the use of ICG may cause shock, allergies and other symptoms

#375194 https://doi.org/10.1364/BOE.10.005744
Journal © 2019 Received 12 Aug 2019; revised 25 Sep 2019; accepted 10 Oct 2019; published 16 Oct 2019

https://orcid.org/0000-0001-8025-4737
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.10.005744&amp;domain=pdf&amp;date_stamp=2019-10-17


Research Article Vol. 10, No. 11 / 1 November 2019 / Biomedical Optics Express 5745

[13]. MB in low doses (<2mg/kg) is safe, however it can induce severe adverse effects such as
arrhythmias, coronary vasoconstriction, and hemolytic anemia in patients with renal insufficiency
or after administration of higher doses [14,15]. Therefore, a low-cost, clinically safe contrast
agent is desirable for future PAI clinical application.
In this paper, we found that a low-cost, clinically widely used medicine, the Intralipid, could

be used as a contrast agent for PAI to enhance the imaging sensitivity and contrast. As an
emulsion of soybean oil, lecithin and glycerin [16], Intralipid is clinically used as a parenteral
nutrition that provides extra energy and amino acids to the body [17]. During clinical practice,
its daily dosage should not exceed 2.5 g of fat/kg of body weight (12.5 ml/kg for 20% Intralipid
and 25 ml/kg for 10% Intralipid) [18]. In addition, Intralipid can also be used to treat cardiac
arrest caused by local anesthesia poisoning [19,20]. In bio-optical imaging research, Intralipid is
commonly used as a medium for making tissue-mimicking phantoms because the propagation of
light in Intralipid solutions behaves like tissue [16]. However, to our best knowledge, no previous
research indicates Intralipid can be used as a contrast agent for photoacoustic imaging. In this
work, we found that Intralipid might be used to effectively enhance the imaging signal of PAI in
living animal. We first measured the optical and photoacoustic properties of Intralipid solutions
under different illumination wavelength. Then, in vivo healthy nude mice imaging experiments
based on a photoacoustic tomography system were carried out, and significant image intensity
increase were observed, further enabling an extended imaging depth. Moreover, Intralipid was
tested on cancer-bearing mice. The imaging results not only showed an increase in structural
visibility, but also strong PA signal aggregation in the tumor area. Quantitative analysis of the
imaging results showed a nearly twofold signal enhancement, consolidating the effectiveness of
Intralipid. Our research revealed the potential of Intralipid for clinical PAI applications, such
as the screening of breast cancer. A faster clinical translation of PAI is possible with Intralipid
because comparing to ICG and other photoacoustic probes, it is not only easier to prepare and
has much lower cost, but also much safer.

2. Experimental

The experimental setup, as shown in Fig. 1, relies on a commercial small animal multispectral
photoacoustic tomography system (MSOT inVision128, iThera Medical, Germany). Pulsed
laser (670 nm - 960 nm tunable) excites the sample through a ten-arm fiber bundle, which
provides a homogeneous, 360-degree illumination over the surface of the sample. A special
animal holder with a transparent plastic membrane is used for animal positioning. The resulting
acoustic waves are simultaneously detected by a ring of ultrasound transducers consisting of 128
elements arranged over an azimuthal span of 270-degrees around the cylinder. The transducers
were cylindrically shaped, creating a cross-sectional imaging field of view. The center frequency
of the transducer is 5 MHz. The transducer time series signals are then reconstructed into 2D
pressure maps using the Back-projection algorithm [21].
All animal experiments were approved by the local Animal Ethics Committee of Southern

Medical University and were performed in accordance with current guidelines. In the in vivo
animal imaging experiment, 8 healthy nude mice (12-15 g/each, female, Southern Medical
University, Guangzhou, China), and 2 nude mice carrying 4T1 mammary carcinoma (Southern
Medical University Cancer Institute, Guangzhou, China) were used.

Prior to imaging, nude mice were induced with 3% isoflurane and then wrapped in polyethylene
membrane and placed in the animal holder with supine position. An insulin injection needle was
embedded into the tail vein in advance, and was connected to a long Polyethylene Tubing 10 (PE
10) that enabled Intralipid injection from outside the imaging chamber. After completing the
above operations, the mice were then transferred to an imaging chamber filled with water at 34
degrees Celsius. All nude mice were anesthetized with 1% isoflurane during imaging. Mice were
allowed to stabilize within the imaging chamber for approximately 15 minutes prior to imaging.
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Fig. 1. Schematic of the PAT system.

After a 60 mins pre-injection scan, every two healthy nude mice were respectively injected with
0.9% physiological saline solution (10 ml/kg), 10% Intralipid (10 ml/kg), 20% Intralipid (10
ml/kg) and 50 ug/ml ICG (10 ml/kg) within a time period of ∼120 s. Two nude mice with 4T1
tumor were injected with 20% Intralipid (10ml/kg). To evaluate the sensitivity of Intralipid, three
different tissue regions: head, abdomen, and tumor were imaged. For each region, multispectral
PAT imaging were performed at seven different illumination wavelengths: 730, 760, 780, 800,
820, 850 and 875 nm. The laser energy at the above wavelengths were 59.08 mJ, 61.17 mJ, 60.54
mJ, 60.1 mJ, 59.5 mJ, 57.95 mJ and 57.01 mJ, respectively. The laser irradiation covered an area
of about 4 cm2, so the maximum surface energy density was about 15.5 mJ/cm2, which was below
the maximum permissible exposure (MPE) of 25 mJ/cm2 recommended by the American National
Standards Institute (ANSI) [22]. Before image reconstruction, the photoacoustic raw data was
normalized to laser energy to avoid errors due to fluctuations in laser energy. Pre-injection scans
were imaged for 1 hour and post-injection scans were imaged for 3 hours, both at 5 minutes
intervals. For image reconstructions in these experiments, the speed of sound in the medium was
set to 1536 m/s and the reconstruction images were consisted of 600×600 pixels.

3. Results

3.1. The photoacoustic property of Intralipid

As a first step, the photoacoustic and optical absorption properties of Intralipid solution was
examined. In this experiment, 3 solutions (saline, 10% Intralipid, and 20% Intralipid) were
separately loaded into a 5 ml Eppendorf (EP) tube. These solutions were fixed on a phantom
holder and placed in the imaging chamber of the described PAT system for cross-sectional imaging.
Figure 2(a) shows the sensitivity of different concentrations of Intralipid and physiological saline
at different wavelengths. The PA signal intensity was normalized in the region inside the EP tube.
Moreover, the near-infrared absorption characteristics of these solutions were further measured
with an absorption spectrometer. The optical absorption spectra of the above three solutions are
shown in Fig. 2(b). Even though the optical absorption of saline was near zero, it still had a very
weak PA signal that is larger than zero. This is because the photoacoustic signal has a signal floor,
and the measured saline PA signal intensity was almost the same to that of the water surrounding
the EP tube. As can be seen, for both optical absorption and PA intensity, Intralipid is much
stronger than saline solution, and 20% Intralipid is stronger than 10% Intralipid.
In addition, the PA signals of 20% Intralipid, ICG at two different concentration and fresh

blood collected from nude mice were compared. In clinical use, the dosage of ICG should be
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Fig. 2. (a) The PA intensity of physiological saline solution, 10% Intralipid and 20%
Intralipid at different wavelengths, as measured by the described PAT imaging system. (b)
The absorption spectra of saline solution, 10% Intralipid and 20% Intralipid.

0.5 mg of ICG/kg of body weight [23]. The injection amount used in our animal studies was 10
ml/kg, so the maximum concentration of ICG was calculated to be 50 ug/ml. The quantitative
analysis results are listed in Table 1. The results showed that the PA signal of the fresh blood
was very strong and its intensity was about 40 times that of 20% Intralipid. In addition, 20%
Intralipid had very close PA signal intensity as that of ICG with a concentration of 0.5 ug/ml. The
PA signal of the ICG at the maximum dose allowed in the clinic did not exceed the photoacoustic
signal of fresh blood.

Table 1. PA signal intensity of different materials (a. u.)

Material Wavelengths

760 nm 780 nm 800 nm 820 nm

Blood 3622.3 ± 153.29 3654.52 ± 157.16 3780.25 ± 92.66 3804.71 ± 170.27

ICG 50 ug/ml 3253.34 ± 185.48 3465.18 ± 199.02 3250.2 ± 196.89 2641.74 ± 150.68

ICG 0.5 ug/ml 85.35 ± 3.2 80 ± 5.2 80.86 ± 3.09 77.61 ± 2.02

20% Intralipid 84.62 ± 19.55 68.09 ± 11.11 62.59 ± 12.28 67.05 ± 12.38

3.2. Healthy nude mice study

Next, we performed in vivo small animal experiment with healthy nude mice. Figure 3 shows the
PAT image before and after 20% Intralipid injection on one of the healthy animal. Figure 3(a) and
(d) were images acquired before injection at t=−5 min, and Fig. 3(b) and (e) were acquired after
injection at t= 175 min. The difference images, Fig. 3(c) and (f), were obtained by subtracting
the pre-injection image from the post-injection image. As can be seen in the head imaging results
(see online supporting information, Head Visualization 1), before Intralipid injection, the contrast
between the head region and the background was poor: the jugular vein, the posterior ear vein
and the sagittal sinus blood vessels could hardly be seen and the boundary brain was not clear.
After the injection of Intralipid (Fig. 3(b)), the vascular signal had been obviously enhanced
and the brain boundary became distinct. PA signal around the bottom region of the head was
recovered (red arrow), indicating an enhanced imaging depth. The difference image in Fig. 3(c)
showed a large intensity enhancement inside the brain, which also suggested that Intralipid can
increase photoacoustic imaging depth. In the results of the abdomen region (Fig. 3(d), Online

https://doi.org/10.6084/m9.figshare.9902141
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supporting information, Abdomen Visualization 2), the overall contrast of the pre-injection scan
image was relatively low, and the boundary between the renal cortex and the renal medulla were
not evident and the intestine was completely blurred. After Intralipid injection (Fig. 3(e)), the
external contours of kidney were much clearer and the intestinal signal was enhanced. Also, the
subcutaneous blood vessels became visible while in the pre-injection image they were too weak
to be recognized. Notice that the background of the difference image was around 0, proving
that the sensitivity enhancement was not related to the imaging system, but was caused by the
injection of Intralipid.

Fig. 3. PAT images of the head and abdomen of healthy nude mice, before and after injection
of 20% Intralipid. Arrows 1: jugular vein, 2: posterior ear vein, 3: the sagittal sinus, 4:
the brain boundary, 5: renal cortex, 6: renal medulla, 7: intestine, and 8: subcutaneous
blood vessels. Illumination wavelength: 760 nm. See online supporting information, Head
Visualization 1 and Abdomen Visualization 2.

As a result of the quantitative analysis, Fig. 4 shows the head PA intensity time series with and
without the injection of saline solution, 10% Intralipid and 20% Intralipid. Pre-injection scans
and post-injection scans at 5 minutes intervals were selected to quantify the dynamic changes of
PA signals. As can be seen from the graph, before injection, the PA intensities of each group are
stable and there are no significant differences between the groups. After injecting Intralipid, the
PA intensity was significantly increased, with 10% and 20% Intralipid increased by 71.98% ±

13.24% and 112.98% ± 29.98%, respectively, while after the injection of saline, the PA intensity
remained unchanged. Moreover, even 3 hours after the injection of Intralipid, the PA signal was
still increasing, indicating a slow metabolic rate of Intralipid in the body.

3.3. Cancerous nude mice imaging study

Next, in vivo tumor-bearing small animal imaging study was carried out. Figure 5 and online
supporting information, Tumor Visualization 3 show the PAT imaging results by injecting 20%
Intralipid on one of the mice. Figure 5(a) was acquired at t=−5 min before injection and Fig. 5(b)
was at t= 175 min after injection. The difference image Fig. 5(c) is obtained by subtracting the
images before and after injection. As can be seen, before injection, there was hardly any intensity

https://doi.org/10.6084/m9.figshare.9902138
https://doi.org/10.6084/m9.figshare.9902141
https://doi.org/10.6084/m9.figshare.9902138
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Fig. 4. Head PA intensity curve with saline solution, 10% Intralipid and 20% Intralipid.
Time dependent PA intensity values were averaged from signals within the head area.

difference between tumor and normal tissue, and the contrast and boundary of the tumor region
was poor. After Intralipid injection, an overall PA signal enhancement was observed within the
animal, including both tumorous and normal tissues, but the signal increase inside the tumor
region was more distinct. Moreover, the difference image showed that Intralipid had strong
aggregation around the tumor surface (red arrow), which is usually vessel-rich, while in normal
tissues, only the blood vessels had comparable enhancement. Furthermore, the PA intensity at
different time was measured at both the tumor region and normal tissue, and the result was shown
in Fig. 5(d). Before injection, there was no significant difference in PA intensity between normal
tissue and tumor area. However, after Intralipid injection, the PA intensity of tumor area rapidly
increased by 57.67% around the first few minutes, and it kept on rising until reaching a 125.98%
increase at t= 175 min. These results indicated that Intralipid might be used to enhance tumor
recognition and detection.

3.4. Statistical analysis

A statistical analysis of all the in vivo animal experiments was performed. For each organ region,
6 images acquired at different time points were selected for quantification from the pre-injection
and post-injection scans respectively. All the images were normalized to the same scale according
to the background (mainly water absorption). Figure 6 shows the statistical analysis of the
head and the abdomen from all 6 healthy nude mice, the data were derived from the mean PA
intensities of the whole tissue regions (the whole mouse body part) and therefore represents the
overall signal enhancement of the contrast agent. As can be seen, the PA intensity of all our
studies had a significant increase after Intralipid injection (p< 0.0001). For the head area, an
average PA intensity enhancement of 68.69% ± 13.62% and 111.96% ± 31.7% were obtained by
the injection of 10% and 20% Intralipid respectively. For the abdomen region, the PA intensity
was increased by 70.53% ± 5.78% by 20% Intralipid, and 36.37% ± 3.39% by 10% Intralipid.

Figure 7 shows the results of PA signal changes of different organs. The data of each organ
were derived from the mean PA intensities of the regions of interest (sagittal sinus: a small region
around arrow 3 in Fig. 3; normal tissue: tissue area other than the tumor in Fig. 5; kidney: the
left and right kidney region in Fig. 3; tumor: the tumor region in Fig. 5). After injection of 20%
Intralipid, the sagittal sinus had the most significant enhancement of PA signal with an average
increase of 126.91% ± 15.39%. In fact, in the head region, major vasculatures including the
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Fig. 5. PAT images of nude mouse bearing 4T1 tumor. (d) shows the PA intensity curves at
tumor region and normal tissue. Time dependent PA intensity values were calculated as the
mean intensity within normal tissue and tumor regions. Illumination wavelength: 760 nm.
See online supporting information, Tumor Visualization 3.

Fig. 6. Statistical analysis of (a) head, (b) abdomen from all 6 healthy nude mice. Serial
numbers 01 and 02 indicates two mice injected with the same solution.

sagittal sinus, the jugular vein, and the posterior ear vein all shown obvious PA signal increase, as
can be seen in Fig. 3. The tumor area had the second strongest PA signal enhancement of 116.54%
± 5.87%. Also can be seen in Fig. 5, the PA signal enhancement effect in the vascular-rich area
inside the tumor was most obvious and concentrated, followed by several large blood vessels
in the abdomen. This might indicate that Intralipid preferentially enhanced the vascular-rich or
rapid metabolism regions. Finally, an average PA signal increase of 69.09% ± 17.19% in normal
tissue, and 25.88% ± 3.82% in kidney were obtained, showing an observable enhancement
brought about by Intralipid.

https://doi.org/10.6084/m9.figshare.9487913


Research Article Vol. 10, No. 11 / 1 November 2019 / Biomedical Optics Express 5751

Fig. 7. Statistical analysis of (a) Sagittal sinus, (d) Kidney from healthy nude mice and (b)
Tumor, (c) Normal tissue from 2 cancerous mice. Serial numbers 01 and 02 indicates two
different mice injected with the same solution (20% Intralipid).

3.5. Comparative study with ICG

As a comparison, in vivo nude mice study of ICG injection was performed. The imaging protocol
was the same as that of the Intralipid. The head and the abdomen regions of two healthy nude
mice were imaged and analyzed. Figure 8 shows the PA signal enhancement of different tissue
regions before and after 50 ug/ml ICG injection (maximum clinical dosage) on two healthy
animal. The head and abdomen data were derived from the mean PA intensities of the tissue

Fig. 8. Statistical analysis of (a) Head, (b) Abdomen and (c) Liver from two healthy animal
before and after injection of 50 ug/ml ICG. Serial numbers 01 and 02 indicates two mice
injected with 50 ug/ml ICG.



Research Article Vol. 10, No. 11 / 1 November 2019 / Biomedical Optics Express 5752

regions (the whole mouse body part). The liver data was derived from the visible liver region
within the abdomen cross-section. For each region, 6 images acquired at different time points
were selected for quantification from the pre-injection and post-injection scans respectively. For
the post-injection data, the images with the strongest PA signal were selected for quantification
because ICG clearance is relatively fast. As can be seen from Fig. 8, after the injection of ICG,
an average PA intensity enhancement of 13.96% in head area, 28.56% in abdomen region, and
269.52% in liver were obtained. The weak signal enhancement at the head region indicated
that only a small amount of ICG entered the head. On the contrary, a large amount of ICG
rapidly accumulated in the liver region, leading to a significant increase in PA signals. The signal
enhancement at the rest of the abdomen, including the kidney area, were not that obvious. This
organ-specific enhancement characteristic of ICG makes it very effective and suitable for liver
imaging. However, compared to 20% Intralipid, even though the ICG has a higher maximum
signal enhancement, its performance at other regions of the body was limited.

4. Discussions

The above results showed substantial PAI image quality improvement introduced by Intralipid,
revealing an attractive prospect for its translation to clinical photoacoustic imaging applications.
The advantages of Intralipid as a photoacoustic imaging probe is prominent: it is clinically safe
and has been used extensively, can be easily prepared and at very low cost. With our founding,
Intralipid could be readily translated to clinical PAI applications such as the screening of breast
cancer [9], sentinel lymph nodes metastatic [7], carotid artery atherosclerosis [10] and so on. In
addition, although we only studied the performance of Intralipid on a photoacoustic tomography
system, it should also be used in other PAI systems such as photoacoustic microscopy (PAM)
[24–26], and a similar image quality enhancement is expected.

In the in vitro experiments, 20% Intralipid had a relatively weak optical absorption compared
to fresh blood and ICG. However, in vivo experiments showed that the injection of 20% Intralipid
almost doubled the overall PA signal of the whole body. This indicated that the enhancement of
PA signals might not only related to light absorption, but also related to the increase of tissue
scattering. This is because compared to previous reported PA probes, Intralipid has a strong
light scattering property. Therefore, the benefits of Intralipid for PAI might have been brought
about not only by its optical absorption, but also by its scattering characteristic, such as in optical
coherence tomography [27]. Nonetheless, the mechanism by which Intralipid enhances the
quality of PAI is still unclear and requires further investigation.
Compared to the organ-selective enhancement and fast clearance of ICG, Intralipid diffuses

in blood slowly, and achieves an overall PA signal enhancement to the whole body. The slow
clearance of intralipid might not be a big problem because originally intralipid is a parenteral
nutrition that could be safely absorbed by the body. In contrast, this feature makes it suitable for
long-term imaging.
Finally, the optical absorption spectrum of Intralipid does not have a sharp peak, therefore

it might be difficult to quantitatively determine its spatial distribution with spectral un-mixing
methods [28]. However, as demonstrated in this work, one of the features of Intralipid for PAI
image enhancement is its increase in overall image quality, which is similar to some previous
reported PA probes, e.g. carbon nanotube [3] and polypyrrole nanoparticles [4].

5. Conclusion

As a clinical widely used medicine, the Intralipid has been used in clinical practices either as a
parenteral nutrition, or a medication for cardiac arrest. In this work, we found that the Intralipid
might also be a promising agent for providing photoacoustic contrast. By conducting in vitro
and in vivo validations, our results showed that the PAI imaging quality could be significantly
enhanced by intravenously injected Intralipid, with a maximum twofold signal intensity increase.
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Further experiments of tumor-bearing mice showed even a strong and long-lasting PA signal
aggregation in the tumor area, revealing the potential of such medicine for cancer diagnosis.
Compared to other PAI probes, the advantages of Intralipid is its safety and easy preparation.
Therefore, Intralipid has the potential to accelerate clinical translation of PAI technology.
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